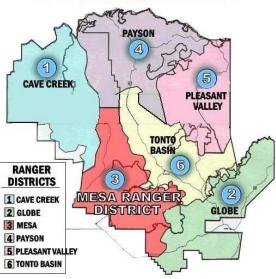
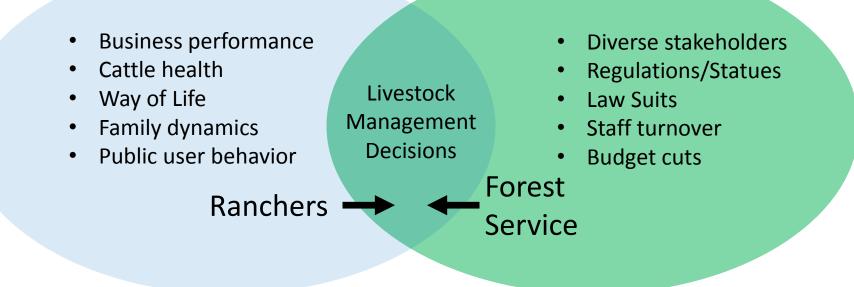
Planning as a Prerequisite to Using Drought Information

- Livestock grazing on Public Lands
- Drought is not the Primary Threat
- Planning Process is Barrier to applying Drought Info
- Using Drought Info to Motivate Planning Process



Livestock grazing on Public Lands

- 90 million acres Forest Service land grazed in the West
- Over 9,000 grazing permits in the West
- Tonto National Forest, Arizona
 - 2.8 mill acres, 105 grazing permits
 - \$48 mill/y cattle sales Gila and Yavapai Counties*
 - Federal rangeland provides 90-95 % of livestock forage



TONTO NATIONAL FOREST

^{*} National Agricultural Statistics Service 2012

Drought is not the Primary Threat

Top 3 Risks for	Ranchers say:	Forest Service says:
Managing Livestock on	Forest Service,	Drinking Water Reliability
the Tonto National	Drought,	& Livestock Practices (tie),
Forest Q3	Federal Regulations	Drought

Planning as a Prerequisite 25 Oct 2016

Drought is not the Primary Threat

- Management flexibility is critical to reduce drought impact
- 3-4 year Forest Service planning process limits flexibility
- **THREAT IS** Length and uncertainty of planning process

	Agree (%)			
	0	50	100	
Flexibility to address				
drought reduces impact to			F91R92	
livestock production Q76				
National Environmental				
Policy Act (NEPA) allows	R11	F46		
enough flexibility q77				

R=Ranchers and F=Forest Service

Planning as a Prerequisite 25 Oct 2016

Drought is not the Primary Threat

• **THREAT IS** Length and uncertainty of planning process

Limited Utility of Drought Early Warning

Ranchers and Forest Service are Not in a position to respond to warning info, until practices are approved and applied

- NOAA-SARP Funding: 2015-2017
 - <u>http://cals.arizona.edu/droughtandgrazing/</u>
- Opportunity to Focus on SPI
 - FS Drought Policy starts at 12-month **SPI -1**
 - Focus on Increasing familiarity with **SPI**
 - Structure Planning Scenario Workshops on **SPI -1**
 - Develop Drought Info Tools using **SPI**

- Drought Scenario Planning Tool
 - Spreadsheet-based for typical grazing allotment
- Assess Threats, Coping Practices, Policy Constraints
- Estimate Length of Planning Approval Process, and Likelihood of Approval
- Compare to ~6 y Return Interval for SPI-1
- Outcomes
 - Motivated to apply on actual allotments
 - Motivated to start the planning process
 - Improved communications and relations

X **Drought Scenario Planning Tool**

Pasture

Riparian

Pipeline

Wydot

Total

Headquarters

Son of A Gun

Miners Camp**

Timber Top**

Preacher Tom

Old Homestead

0 0

0

0

0

0

0

0

0

8					Herd Composition		
Reference Values for Drought Severity Eff		Jan - May	June				
	Wint	er*	Sun	nmer	Cows	300	
Standard Precipitation Index (SPI)	-1	-2	-1	-2	Bulls	20	
Estimated Forage Reduction (% of Average)	0.58	0.34	0.72	0.52	Yearlings	150	
*Winter = October - May; Summer = June - S	September				Total Herd AU's	440	

Drought Factors Grazing Plan SPI Value

(pasture level)

Winter Summer Season

Season

-1

-1

-1

re on nce	Planned % Utilization	Water (dates when unavailable)	Seasonal Use Restrictions (dates)	Number Days in Pasture	First Day in Pasture	Last Day in Pasture	Maximum Seasonal Grazing Days	Drought Season Affecting Forage Production	Pasture Warnings	Herd Grazing Days Without Drought	Seasor Grazin	-Adjusted nal Herd ng Days Summer Season
1	20%			43	1/1/2016	2/12/2016	25.9	Winter	Exceeds Maximum S	45	26	45
2	40%			19	2/13/2016	3/2/2016	11.4	Winter	Exceeds Maximum S	20	11	20
3	40%			60	3/3/2016	5/1/2016	44.6	Winter	Exceeds Maximum S	77	45	77
4	40%			50	5/2/2016	6/20/2016	51.4	Winter		89	51	89
5	40%			40	6/21/2016	7/30/2016	71.2	Summer		71	41	71
6	20%			25	7/31/2016	8/24/2016	30.5	Summer		31	18	31
7	0%			0	8/24/2016	8/24/2016	0.0	Summer		0	0	0
8	40%			76	8/25/2016	11/8/2016	93.2	Summer		93	54	93
9	40%			52	11/9/2016	12/30/2016	81.4	Summer		81	47	81
				365			410			506	294	506

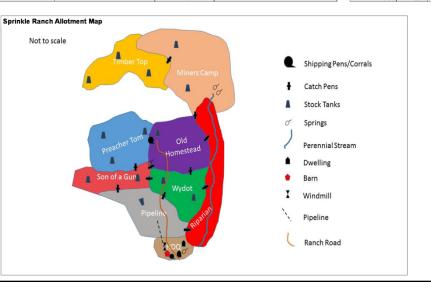
**Rest rotation every other year, summer use

Pasture	
Sequence	
Re-Sort	

Pasture

Rotatio Sequenc

Instructions for Drought Scenario Planning


- 1. Input user defined data into open white boxes
- 2. Enter SPI value for winter and summer for each pasture
- 3. Enter Unavailable water dates for each pasture
- 4. Enter use restriction dates for each pasture
- 5. Examine warnings for use levels exceeded (red text)
- 6. Consider adjustments to maintain use within allowable levels. Consider the following:
 - a. Herd size and composition
 - b. Days in pasture c. Pasture rotation sequence
 - d. Planned utilization

Other Features

1. "Pasture Sequence Re-Sort" button on the screen will re-arrange the pastures and dates according to the pasture rotation sequence you selected if you decide to make changes to the original sequence (cannot undo this action except by hand)

2. Saving scenario solutions in spreadsheet tabs: Identical copies of the tool with the specific scenario details are saved in different spreadsheet tabs located at the bottom of the window; these can be used to save different possible solutions to a single drought scenario. These are labeled by default as "Solution 1", "Solution 2", etc.

3. Worksheet: used in conjunction with this tool to identify solutions and determine whether they will need consultation and approval with updated AOI and deviation from AMP.

- SPI Explorer Tool <u>https://uaclimateextension.shinyapps.io/SPItool/</u>
 - Historic values any location in US
 - Referenced to actual PPT values
 - Drought Category Transition Function
 - Likelihood of future SPI value give current value
- Outcomes
 - More familiar and comfortable with SPI
 - Using empirical climatology to judge drought risk
 - Motivated to apply on actual allotments

) (i) A https://uaclimateextension.shinyapps.io/SPItool/			C Q	Search	☆自	7 🕂 1
Standardized Precipitation Ind	ex Explorer Tool					
About Tool Set location/time perio	od Site Climate Summary	SPI Timescale Comparison SP	I-Precip Comparison Drought Cat	egory Transitions		
eriod 1 SPI timescale:						
) 1 month) 3 month	very wet(>1)	0	17.6	58.8	23.5	
) 12 month eriod 1 - End Month:	Drought Category	7	27.9	53.5	11.6	probabil 0
1 3 5 7 9 11		25.6	34.9	34.9	4.7	20 30 40
eriod 2 SPI timescale: 1 month 3 month	dry (-1 to 0)					
12 month	very dry (<-1)	42.1	36.8	21.1	0	
· · · · · · · · · · · · · · · · · · ·	12	very dry (<-1)	dry (-1 to 0) Period 2 SPI Di	wet (Ổ to 1) rought Category	very wet(>1)	
	Category	Period 1 Period 2				

This tool examines the probability of moving from one SPI based drought category to another based on the historical precipitation record at this location. The chart is read as the row indicating the drought category for the initial month and the column as 'forecast' month. For example, if you were interested in how often a very wet July was followed by an overall very wet summer (July-Aug-Sep) precipitation total, you would set Month 1 to 1-month SPI and July and Month 2 to 3-month SPI and September. Reading across the first row (month 1-very wet) to the last column (month 2-very wet) indicates the probability of this outcome based on historical occurrences. A longer period of record yields more stable results.

	Category	Period 1	Period 2
1	very dry (<-1)	< 0.71 in.	< 2.99 in.
2	dry (-1 to 0)	0.71 to 1.39 in.	2.99 to 4.46 in.
3	wet (0 to 1)	1.39 to 2.44 in.	4.46 to 6.33 in.
4	very wet(>1)	> 2.44 in.	> 6.33 in.

Wooton Hall, NMSU : 1895-2016

- July SPI is known (Y-axis)
- Likelihood of July-Sept SPI (X-axis)
- Translation to inches provided

Summary

- Livestock grazing on Public Lands
- Drought is not the Primary Threat
- Planning Process is Barrier to applying Drought Info
- Using Drought Info to Motivate Planning Process

Planning as a Prerequisite to Using Drought Information

Mitch McClaran University of Arizona Ma mcclaran@u.arizona.edu

Web Resources

- SPI Explorer Tool
 <u>https://uaclimateextension.shinyapps.io/SPItool/</u>
- Drought and Climate Dashboard <u>https://cals.arizona.edu/droughtandgrazing/dashboard</u>
- Drought Scenario Planning Tool <u>https://cals.arizona.edu/droughtandgrazing/</u> (scroll to Publications and Papers)

Planning as a Prerequisite to Using Drought Information

Mitch McClaran University of Arizona <u>mcclaran@u.arizona.edu</u>